GCE Examinations

Advanced Subsidiary / Advanced Level

Mechanics
 Module M1

Paper K

MARKING GUIDE

Abstract

This guide is intended to be as helpful as possible to teachers by providing concise solutions and indicating how marks should be awarded. There are obviously alternative methods that would also gain full marks.

Method marks (M) are awarded for knowing and using a method.
Accuracy marks (A) can only be awarded when a correct method has been used.
(B) marks are independent of method marks.

Written by Shaun Armstrong \& Chris Huffer
© Solomon Press

M1 Paper K - Marking Guide

1. (a) impulse $=\Delta$ mom $=800(0-15)={ }^{-} 12000 \therefore$ mag. $=12000 \mathrm{Ns}$

M1 A1
(b) $\quad F t=12000$, so $t=\frac{12000}{60000}=0.2 \mathrm{~s}$

M1 A1
(c) use $v=u+a t$ with $v=0, u=15 t=0.2$

M1
$0=15+0.2 a \quad \therefore a={ }^{-} 75$ so decel. $=75 \mathrm{~ms}^{-2}$
M1 A1
2. (a) moments about O (clockwise +ve): $90(1.2)+70(1.2)-80(1.2)-60(1.2)$ M1
$=20(1.2)=24 \mathrm{Ns}$ (clockwise)
M1 A1
(b) moments about $O: 90(d)+70(1.2)-80(1.2)-60(1)=0$

M2 A1
$90 d=72 \therefore d=0.8 \mathrm{~m} \quad \therefore x=0.4 \mathrm{~m}$
M1 A1
3. (a) $\mathbf{r}=4 t i \mathrm{~m}$

A1
$\mathbf{s}=(30 \mathbf{i}-60 \mathbf{j})+(-8 t \mathbf{i}+24 t \mathbf{j})$

$$
(30-8 t) \mathbf{i}+(24 t-60) \mathbf{j} \mathbf{m} \quad \mathrm{A} 1
$$

(b) they will collide if coeffs. of \mathbf{i} and \mathbf{j} in \mathbf{r} and \mathbf{s} are equal
$4 t=30-8 t$ and $24 t-60=0$
both are satisfied when $t=\frac{5}{2}$ so ball hits batsman
batsman is at $(4 \times 2.5) \mathbf{i}=10 \mathbf{i}$
(c) ball travelling fast \therefore air resistance significant

B1
ball will be affected by gravity \therefore not horizontal (may go over batsman) B1
4. (a) cons. of mom. $4 m \times 2-3 \mathrm{~m} \times 2=0+3 m v$

$$
2 m=3 m v \text { so } v=\frac{2}{3} \mathrm{~ms}^{-1}
$$

(b) $R=m g{ }^{-} F=m a$
but $F=\mu R$; so $a=\frac{-\mu R}{m}=\frac{-\mu m g}{m}={ }^{-} \mu g$
use with $u=\frac{2}{3}, v=0, s=0.2$
M1 A1
$v^{2}=u^{2}+2 a s, \therefore 0=\frac{4}{9}-0.4 \mu g$
M1
$\mu=\frac{10}{9 g}=0.113$ (3dp)
M1 A1
5. (a)

$$
\text { resolve // to plane: } 50-20-70 g \sin 5^{\circ}=70 a
$$

M1 A1
$a={ }^{-} 0.43, \therefore$ decel. $=0.43 \mathrm{~ms}^{-2}(2 \mathrm{dp})$
M1 A1
(b) use of $s=u t+\frac{1}{2} a t^{2}$ with $u=3$ for $t=4$ and $t=5$
to give $s=12+8 a$ and $s=15+12.5 a$
M1 A1
$\therefore 15+12.5 a=12+8 a+12$
M1
$4.5 a=9 \therefore a=2 \quad$ M1 A1
use $v=u+a t$ with $u=3, a=2, t=5$
$v=3+2 \times 5=13 \mathrm{~ms}^{-1}$
A1
6. (a) eqn. of motion for $A: T=5 a$ (1)
eqn. of motion for $Q: 2 g-T=2 a$ (2)
$(1)+(2)$ gives $2 g=7 a$ i.e. $a=\frac{2 g}{7}$
from (1), $T=5 a=\frac{10}{7} g \mathrm{~N}$
so force on pulley $=\sqrt{T^{2}+T^{2}}=T \sqrt{2}$

$$
=\frac{10 \sqrt{2}}{7} g \mathrm{~N}
$$

(b) $s=0.3, u=0, a=\frac{2}{7} g$ use $v^{2}=u^{2}+2 a s$
$v^{2}=\frac{6}{35} g$ i.e. $v=\sqrt{\frac{6}{35} g}=\sqrt{1.68}=1.30 \mathrm{~ms}^{-1}(3 \mathrm{sf})$
(c) B has 0.2 m left to fall
for $B: u^{2}=\frac{6}{35} g, s=0.2, a=g$ use $v^{2}=u^{2}+2 a s$
$v^{2}=\frac{6}{35} g+2 g(0.2) \quad \therefore v^{2}=5.6 ; v=2.4 \mathrm{~ms}^{-1}(1 \mathrm{dp})$
M1 A1
7.

Performance Record - M1 Paper K

Question no.	1	2	3	4	5	6	7	Total
Topic(s)	impulse, uniform accel	moments	$\begin{array}{\|l\|} \hline \text { rel. posn. } \\ \mathbf{i}, \mathbf{j} \end{array}$	cons. of mom. friction	uniform accel., $F=m a$	connected bodies	statics	
Marks	7	8	10	10	12	14	14	75
Student								

